Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis

نویسندگان

  • Chao Li
  • Yan Wang
  • Liang Xu
  • Shanshan Nie
  • Yinglong Chen
  • Dongyi Liang
  • Xiaochuan Sun
  • Benard K. Karanja
  • Xiaobo Luo
  • Liwang Liu
چکیده

The MADS-box gene family is an important transcription factor (TF) family that is involved in various aspects of plant growth and development, especially flowering time and floral organogenesis. Although it has been reported in many plant species, the systematic identification and characterization of MADS-box TF family is still limited in radish (Raphanus sativus L.). In the present study, a comprehensive analysis of MADS-box genes was performed, and a total of 144 MADS-box family members were identified from the whole radish genome. Meanwhile, a detailed list of MADS-box genes from other 28 plant species was also investigated. Through the phylogenetic analysis between radish and Arabidopsis thaliana, all the RsMADS genes were classified into two groups including 68 type I (31 Mα, 12 Mβ and 25Mγ) and 76 type II (70 MIKCC and 6 MIKC∗). Among them, 41 (28.47%) RsMADS genes were located in nine linkage groups of radish from R1 to R9. Moreover, the homologous MADS-box gene pairs were identified among radish, A. thaliana, Chinese cabbage and rice. Additionally, the expression profiles of RsMADS genes were systematically investigated in different tissues and growth stages. Furthermore, quantitative real-time PCR analysis was employed to validate expression patterns of some crucial RsMADS genes. These results could provide a valuable resource to explore the potential functions of RsMADS genes in radish, and facilitate dissecting MADS-box gene-mediated molecular mechanisms underlying flowering and floral organogenesis in root vegetable crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector

It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...

متن کامل

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon

MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We ...

متن کامل

Bio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium

In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L)...

متن کامل

Bioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor

The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016